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The primary goal of this paper was to create new classes of models based on the
existing Multivariate ARCH models. The MARCH models are used to create Upper
and Lower Diagonal models. The models have upper and lower diagonal element
parameter restrictions in the coefficient matrices and are found to have the same
comparative advantage as MARCH models. Empirical evidence from the Nigerian
Urban and Rural Consumer Price Indices has identified UDMARCH and LDMARCH

as new classes of models suitable for the volatility of multivariate time series.

Keywords: UDMARCH, LDMARCH, MARCH, Autocorrelations and Cross-

Autocorrelations.

1. Introduction

Upper and Lower Diagonal Autoregressive Conditional Heteroskesdaticity Models are
subsisting models in the Multivariate Autoregressive Conditional Heteroskedasticity
(MARCH) Models identified under certain conditions. MARCH models are multi-
response models that provide for interactive effects between the response and
predictor variances through their respective lag terms. Upper and Lower Diagonal
MARCH models are classes of models whose parameters are restricted to upper and
lower diagonal elements of the coefficient matrices. These involve interactions and
interdependence amongst the response and predictor conditional variances in each of
the Multivariate ARCH models. Bollerslev (1988), Hanson and Hoedahl (1998)
introduced Multivariate ARCH models for volatility series with the distributed lags



114 Journal of Econometrics and Statistics

of the squared error as predictor terms. These are generalisation of univariate ARCH
models ~ whose  conditional  variance 67 is a linear = combination
of €71, €7y ...€f_g, Engle et al (1993), Gujarati and Porter (2009). A univariate
extension of the ARCH model is the Generalised Autoregressive Conditional
Heteroskesdasticity (GARCH). In the GARCH model, the response variance is
predicated upon the distributed lag of both the squared error and the variance
predicted by o2 ,, 025, ...O'tz_p and €2 1, €2 ,, ...etz_q. The model is therefore expressed
as a linear combination of autoregressive and moving average processes with “p” and
“q” as their respective orders. The multivariate ARCH models involve multi-response
conditional variances, such that the lag terms of each are exogenous to other
response variances. Given a set of variances of, 0%, ..,0% with lag terms of the
squared €rrors €fr-1) €Ttz - G%t—q; €5t—1) €3¢ -2, - e%t—qu Ent—1 Ent—2 erzlt—q
respectively, the models that establish the interactions and interdependence between
the response variances and exogenous error terms are Multivariate ARCH models.
From the MARCH models, Bollerslev (1988) introduced Pure Diagonal Multivariate
ARCH models. The parameters of the models are restricted to only the principal
diagonal of the coefficient matrices. Although the models are parsimonious, the
parameters restriction to only the principal diagonal in the coefficient matrices does
not allow for interdependence amongst the conditional variances. Unlike the upper
and lower diagonal matrices of coefficients, which give room for interactions amongst
the variances, they provide useful information about the contribution of each
predictor term to the response variance. The Upper and Lower Diagonal MARCH
Models are parsimonious in their present form, compared to Bollerslev (1988) and
Usoro et al (2019). In time series modelling, the adoption of principal of parsimony
allows for parameter reduction, therefore, easing the complexity in the estimation of
the model parameters. This is important, especially, when the roots of higher order
polynomials of the characteristic equation are obtained for stationarity check of the
time series process. The Upper and Lower Diagonal MARCH Models proposed in this
paper have an advantage over Bollerslev (1988), who introduced Pure Diagonal
MARCH as the Bollerslev models took a univariate form having restricted the
parameters to only principal diagonal elements in the coefficient matrices. By
implication, Bollerslev (1988) do not give room for interactive effects between each
response and lag terms of predictive variables. Notwithstanding the parameter

restrictions to upper and lower diagonal elements of the coefficient matrices in this



Usoro, Anthony E. 115

paper, the new classes of MARCH Models do not negate the feedforward and
feedback mechanism between each response and the lag terms of other predictive
variables. The fact is that, increase in the number predictive variables in an
estimated models maximises the chances of multicollinearity amongst the lagged
explanatory variables. The introduction of the Upper and Lower Diagonal MARCH
Models which are limited to upper and lower diagonal elements of the parameter
matrices partly addresses the issues of multicollinearity in the regression estimates of
the multivariate time series models. The major focus of this work is to propose upper
and lower diagonal multivariate autoregressive conditional heteroskedasticity models
as new classes of MARCH models which in effect, avert the complexity in the
estimation of model parameters, as well as minimizes the chances of multicollinearity

in the estimated models.

2. Review

This section deals with the review of related works on multivariate volatility models.
The multivariate analogous to the ARCH (q) model is the MARCH (q) of multiple
response variances by Bollerslev et al (1988), Engle and Kroner (1995) and Luc et al
(2006). Bollerslev et al (1988) also introduced the DVECH model for K=2,
restricting the parameters of the coefficient matrices to pure diagonal elements.
These models are parsimonious with the parameter restrictions. The proposed models
are Diagonal Autoregressive Conditional Heteroskedasticity Models. DVECH by
Bollerslev et al (1988) has associated parameters of the first and second lag terms of
€Z, precluding the interactions and interdependence amongst the predictor and
response variances in the Multivariate ARCH models. These are pure diagonal
ARCH models. On Lower diagonal model included Usoro and Omekara (2007). Other
diagonal time series models included Covariance analysis of the squares of the purely
diagonal bilinear time series models by Iwueze and Johnson (2011), and the
properties of pure diagonal bilinear models by Omekara (2016). In this paper, we
propose Upper and Lower Diagonal Autoregressive Conditional Heteroskedasticity
Models from the existing MARCH models. What differentiates the proposed Upper
and Lower Diagonal MARCH models from the DVECH models introduced by
Bollerslev et al (1988) is that the earlier contain interactive parameters of the
response and predictor variables in the matrix of coefficients, while the latter models

have parameter restrictions to pure diagonal elements, which takes a univariate form.
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Usoro et al (2019) fitted MARCH models to Nigeria Urban, Rural and Average
Consumer Price Indices. The models were not parsimonious in their form because of
the multiple parameter estimates. In this paper, data on consumer price indices will
be used to compare the performances between the general MACH Models and
Upper/Lower Diagonal MARCH Models. As part of the properties of time series
models, this paper also considers Upper and Lower Autocorrelations and Cross-

Autocorrelations for the MARCH models.

3. Methodology
3.1 Diagonal MARCH Models from Multivariate ARCH Models

PROPOSITION

..........
.....

.....

.....

Upper Diagonal Autoregressive Conditional Heteroskedasticity (UDMARCH)
Models. If the number of 8,3 < 65,5 <+ < Oy, then we have Lower Diagonal
Autoregressive Conditional Heteroskedasticity (LDMARCH).

Derivation:
From the above proposition, let a set of Multivariate ARCH Models by Usoro et al
(2019) be presented as follows

q n
aizif =% + ZZ 9iv.s‘53t—s:i = 11 w,m (1)

s=1v=1

Case 1: Upper Diagonal MARCH Models

Given crl-zt; ifi=1Lv=123,...n,s=12,..,q
ifi=2,v=23,...m;s=1,2,..,q
ifi=3;,v=3,..,n;s=1,2,...,q

ifi=mv=mns=12..,q
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04 has a set of models with the number of sequential coefficients 0y, 5 > 05,5 > -+ >
Omps, Which describe the upper diagonal parameter matrices. Hence, the Upper

Diagonal MARCH model is presented as
Vit 601,565 v =123,..,15=12,.,q
Y2 + 02y €2, v =2,3,..,m;5 = 1,2,...,q
O_izt = Y3 + 931,.56515_5,17 =3,..,n;s =1,2, v q ,fOT‘ glv.s > 9217.5 > > gmv.s (2)

Ym t+ gmv.segt—s:v =n;s=12,..,q

Proof:
Case 1:

From Equation (1), we have

n q
2 2 P
Ot =Vi + Z Z Biv.sevt_s,L = 1, e, m

v=1s=1

Expanding the above model gives

n

T =vit Z[eiv.16127t—1 + 026+ F giv.qelzzt—p] i=1,..,m
v=1
=Y+ [(9i1.1eft—1 + 0122651 + -+ Oipa€n_y)
+ (Bi12€5—5 + 012265 5+ + Oppa€h,_5) + -
+ (0i1.€%—q + Oing€le—g + - + Oingelig)] i=1,...m 3)

From Equation (3), fori =1;v=1,2,..,n;s = 1,2,...,q, we have
0t = V1 + 01116511 + 0121€5 1 4+ O1p 1€ g + 0112655 + O12265, 5 +
+ 91n.26121t—2 + 911.q612t—q + 912.q622t—q ++ eln.qerzlt—q (4’)

From Equation (4),
0% =y, +0,,.€4_,v=123,..,ns5s=12,..,q (5)

Fori=2,v=23,..,n;s =1,2,..,q, we have,

2 _ 2 2 2 2 2
O3t =V2+ 0221651 +2923.163t—1 +2 + 92n.16n§—1 + 0552652 +2923.263t—2 + o
+ 92n.26nt—2 + 922.q62t—q + 923.q63t—q +t 92n.q6nt—q (6)

From Equation (6),
04 = V2 + Oy s€i_v=23,.., ;s =12,..,q (7

Fori=3;v=34,..,n;s =1,2,..,q, we have,
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2 _ 2 2 2 2 2
03¢ = V3 + 0331651+ 0341651+ + 031654 + 033,655 + 034565, +
2 2 2 2
+ 93n.26nt—2 + 933.q63t—q + 934.q64t—q + -t 93n.q6nt—q (8)

From Equation (8),
0% =y3+ 03,654 o, v=34,...,. ;s =12,..,q (9)

Fori=mv=n;s =1,2,...,q, we have,

O_rzlt =VYm Tt gmn.lerzlt—l + gmn.zerzlt—z +-t gmn.qerzlt—q (10)

From Equation (10),
O_rzlt =¥Ymt gmv.segt—s'v =nms=12..,q (11)

Therefore, Equations (5), (7), (9) and (11) are a compendium of UDMARCH models,
which complete the proof.

Case 2: Lower Diagonal MARCH Models
Given O'izt; ifi=Lv=1s=12,..,¢q
ifi=2,v=12;5s=1,2,..,q
ifi=3,v=123s=1,2..,qg
ifi=mv=123,.,ns=12..,q

o2 has a set of models with the number of sequential coefficients 6, s < 05, < +++ <
Ovs» which describe the lower diagonal parameter matrices. Hence, the Lower

Diagonal MARCH model is presented as
( Y1t glv.segt—s' v=1s=12..,q
17 9217.56515—5' v=12s=12,..,q
Jiztf = Y3 + 931,.56515_5,17 =1,2,3;s=12,..,q Jor 01y < Ozps <o+ < Opys (12)

Ym + Omws€2-v =1,2,3,..,m;s =1,2,...,.q

Proof:

From Equation (3), the necessary conditions are set. Thus,
Fori=1;,v=1;5s=1,2,..,q, we have

0fr = V1 + 01116511 + 01126512 + 0114654 (13)

From Equation (13),
0fe = Y1+ Oiys€ne-s V= 15 = 12,.,q (14)
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Fori=2;,v=1,2;s=1,2,...,q, we have
03 = Vo + 0211651 + 0321651 + 031265 5 + 050265 5+ + 621.q612t—q
+ 622.q622t—q (15)

From Equation (15),
Oh =V + 05,0654 _v=1,25=12,..,q (16)

Fori=3;v=123;5s=1,2,..,q9, we have
03 =V¥3 +2931.1E12t—1 +2932.1622t—1 +2933.1532t—1 + 031 2€5—5 + 0322655 + 033265,
o+ 031 g€7t—q + 032 4€5t—q + 033 4€5t—¢ (17)

From Equation (17),
0%, = V3 + 03,565 s v=123;5=12,..,q (18)

Fori=mv=1,2,..,n5 =1,2,...,q, we have,
2 _ 2 2 2 2 2
Omt =Vm + Om11€1e—1 + Oma1€5e1 + -+ Omn1€ne—1 + 012612 + Omo €35 +
2 2 2 2
+ Omn2€nt-2 + o+ Omig€it—q + Om2.q€2t—q T Omnq€ni-q (19)

From Equation (19),

O-T%lt =VYmt (pmj.kajzir—k + va.segt—y v = 1' 2' S = 1'2' - q (20)

Therefore, Equations (14), (16), (18) and (20) are a set of LDMARCH models, for
Prjk < Pojp < < @Pjx and 0y, < Oy, ¢ < -+ < Oy, 5. These complete the proof.

What differentiate the two models are the parameter restrictions to the upper and
lower diagonal elements of the coefficient matrices. The restriction of the parameters
of the new classes of MARCH models is to avert heavy parameterization in the
models. This guarantees parsimonious Multivariate ARCH. As parsimonious models,
the UDMARCH and LDMARCH models modify Bollerslev (1988) and Usoro et al
(2019).

3.2 Autocovariances and Cross-Autocovariances
The Autocovariances and Cross-Autocovariances of the multivariate volatility series

are presented as
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Tit+k,jt+l
[T1t+k,1t+l Tit+k2t+l  Tie+k3t+l """ Tit+knt+l
| T2t+kat+t Tat+k2t+1l T2e+k3t+1 """ Tat+kne+l |
= | Tatwkae+t  T3twk2e+l  Tat+k3e+l " Tat+kne+l | 21

Tmt+k,1t+1 Tmt+k,2t+1 Tmt+k,3t+l"'Tmt+k,nt+lJ

Each Tjpyp jesr in (21) is a sub-matrix of autocovariance or cross-autocovariance

of the processes.

3.3 Autocorrelations and Cross-Autocorrelations

Autocorrelations measure the correlation between each response time variable and its
lag terms, while. It is the correlation between X; and X;_j. Cross-Autocorrelations
measure the correlations between two different time variables and their lag terms;
correlation X;; and Xj._, orX;; and X;;_, (i # j). The Autocorrelations and Cross-

Autocorrelations of the multivariate volatility series are presented here;

Pit+k,jt+1
[p1t+k,1t+l Pit+k,2t+l  Pit+k3t+1 """ Plt+knt+l
| Pzt+kat+1  P2t+k2t+l  Pat+k3t+l """ P2t+knt+l
= | P3t4rat+l  Pat+k2e+l  P3t+k3e+l """ P3t+knt+l

(22)

Pme+k,1t+1 Pmt+k,2t+1 Pmt+k,3t+l"‘Pmt+knt+lJ

Yit+k,jt+l .
2L and

Where Pit+k,jt+1 = ﬁ = 1, ...,m;j = 1, o, n, k= O, ...,T;l = 0, Y

The autocorrelation and cross-autocorrelation matrix of the response and
predictor variables is symmetrical. Therefore, the elements in the upper and
lower diagonal for the response and predictor variances remain the same. The
autocorrelation is the correlation between each response variance and its
respective lag term. The cross-autocorrelation is the correlation between a
conditional variance and the lag term of the other conditional variance Usoro
(2020). This paper also presents the diagonal structure of autocorrelations and
cross-autocorrelations as properties of upper and lower diagonal multivariate

autoregressive conditional heteroskedasticity models.

Case 1: Identification of Upper Diagonal Autocorrelation and Cross-

Autocorrelation Matrix
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From Equation (22), pitskjesi(i=1,..m;j=1,..nk=01,..,r;i=01,..5) 15 the general
autocorrelation and cross-autocorrelation of response and predictor conditional
variance. We present the upper diagonal autocorrelation and cross-

autocorrelation functions as,

(Pit+k,jt+l, i=1,j=234,..,n
Ip2t+k,jt+l: i=2,j=2,3,4..,n

Pit+k,jt+l = { P3t+k,jt+l, i=3j=234,..,n (23)
| :

Lomt+k,jt+l, i=m,j=n(m=n)

Case 2: Identification of Lower Diagonal Autocorrelation and Cross-

Autocorrelation Matrix

From Equation (22), pitsr,je+i(i=1,..m;j=1,..n;k=01,..,71=01,...s) Present the lower

diagonal autocorrelation and cross-autocorrelation functions as,

( Pit+k,jt+1, i=1j=1
I Pzt+kje+t, L =2,] =12
Pit+k,jt+1 = { P3t+k,jt+1, i=3,j=123 (24)
I :
Lomt+k,jt+l, i=m,j=123,..,n(m=n)

121

Equations (23) and (24) represent the upper and lower diagonal autocorrelation and cross-

autocorrelation matrices respectively. The two triangular matrices are symmetrical.

The

autocorrelations and cross-autocorrelations are very useful in the choice of the model for each

volatility series. The lag length can be determined through the usual ACF and PACF as

applicable in the autoregressive and moving average processes.

3.4 Data Source and Volatility Measure

The data for the work are Nigerian Urban and Rural Consumer Prices Indices

collected from the Website of the Central Bank of Nigeria. The range is

from

November 2009 to February 2016, with November 2009 as the constant basic price.

The variance ¢Z is a volatility measure, which is obtained as the square of the return

series of each consumer price index. Thus,

(25)
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where, o0;,€; and Z; represent the return series, error term from the model and
standard normal random variable. €,~N(0,062) and Z,~N(0,1). The error can be
obtained as the product of the return series and standard normal random variable
simulated with zero mean and unit variance. Alternatively, the error can be obtained
as the residual of the preliminary regression estimates of the stationary series. The
square of the error is the predictive time variable, whose lag terms are the

predetermining factors to the volatility response time variable.

4. Estimation of Models

This section presents estimates of model parameters for the two series on the basis of
the distributions of the autocorrelation and partial autocorrelation functions.
Although, the plots of ACF and PACF of the volatility series are not shown, but

form the basis for the choice and order of each model.

Tablel: Estimation of Parameters of the MARCH [P (3, 0)] Models

Predictor = Coefficients SE. Coefficients T P

Urban CPI
€1 0.1563 0.0922 1.69 0.093
€2 -0.0053 0.0892 -0.06 0.952
€13 0.0435 0.0865 0.50 0.615
€1 -0.0833 0.0510 -1.63 0.105
€2 0.1074 0.0429 2.50 0.014
€53 0.0714 0.0522 1.37 0.174

Rural CPI
€1 0.145 0.163 0.88 0.378
€2 -0.064 0.158 _0.41 0.686
€3 0.323 0.153 2.11 0.037
€1 0.2198 0.0903 2.43 0.016
€2 0.4916 0.0760 6.47 0.000

€5 0.1764 0.0925 1.91 0.059
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Table2: Estimates of Parameters of the UDMARCH [P(3,0)] Models

Predictor

Coefficients

Urban CPI Estimates

€1r-1
€5r-1
G%t—Z
€512
€1¢-3

2
€2:-3

0.1563
-0.0833
-0.0053
0.1074
0.0435
0.0714

Rural CPI Estimates

2

€1t-1
2

€112

2
€1¢t-3

0.2027
0.5220
0.1964

SE. Coefficients

0.0922
0.0510
0.0892
0.0429
0.0865
0.0522

0.0870
0.0752
0.0864

T

1.69
-1.63
-0.06
2.50
0.50
1.37

2.33
6.94
2.27

P

0.093
0.105
0.952
0.014
0.615
0.174

0.021
0.000
0.025

Table3: Estimates of Parameters of the LDMARCH [P(3,0)] Models

Predictor

Coefficients

Urban CPI Estimates

2

€1t-1
2

€1¢-2

2
€1t-3

0.2638
-0.0124
0.1100

Rural CPI Estimates

2
€1t-1
2
€2¢-1
2
€112

2
€2:-2

0.145
0.2198
-0.64
0.4916
0.323
0.1764

SE. Coefficients

0.0882
0.0912
0.0882

0.163
0.0903
0.158
0.0760
0.153
0.0925

T

2,99
0.14
1.25

0.88
2.43
-0.41
6.47
2.11
1.91

P

0.003
0.892
0.215

0.378
0.016
0.686
0.000
0.037
0.059

123
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Table 4: Descriptive Statistics for the Errors of MARCH and DM ARCH Models

Variable N Mean SE. Mean St. Dev Sum of Squares
MARCH (0%, 130 0.00000 0.000003 0.000035  0.000000
MARCH (03,) 130 0.00000 0.000005 0.000055  0.000000

UDMARCH (o2,
UDMARCH (o2,
LDMARCH (o2,
LDMARCH (o2,

130 0.00000 0.000003 0.000036  0.000000
130 0.00000 0.000005 0.000056  0.000000
130 0.00000 0.000003 0.000036  0.000000
130 0.00000 0.000005 0.000055  0.000000

)
)
)
)

Tables 1, 2 and 3 present parameter estimates for the MARCH, UDMARCH and
LDMARCH models. Table 4 presents the basics statistics showing the performances
of the three models. The basic statistics of the errors in the table for the three
models reveals zero mean with values of the standard deviation. These showcase
equal comparative advantage of Bollerslev (1988) and Usoro et al (2019). The three
models capture volatility clustering in the Urban and Rural Nigeria Consumer Price
Indices. What is very interesting in the Upper and Lower Diagonal MARCH models
is that restrictions in the parameters of the models to the upper and lower diagonals
of the coefficient matrices does not negatively affect the estimated model as evident
in the basic statistics in Table 4. Besides the equality in the performances between
Bollerslev’s and these new classes of multivariate volatility models, Upper and Lower
Diagonal MARCH models are parsimonious with the reduction in the number of

parameters in the models. This is a novel idea and important aspect of this work.

Summary and Conclusion

The interest in this paper was motivated by the need to identify classes of diagonal
models from the existing MARCH models for volatility series. This ascertained
stability in the volatility series. MARCH models are multivariate ARCH models with
interactive effects of the predictor and response lag terms on each response
conditional variance. In this paper, we have introduced Upper and Lower Diagonal
MARCH models which are linear combinations of the lag terms of the squared error.
The new set of models have a reduction in the number of parameters from the
general MARCH models with interactions and interdependence on each response
variance. Advantageously, the UDMARCH and LDMARCH models are parsimonious
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with parameter restrictions to only upper and lower diagonal elements in the
coefficient matrices. Besides, the basic statistics in Table 4 is an indication of equal
performances of the new set of MARCH models and the existing ones. Apart from
the principle of parsimony observed in the new models through reduction in the
model parameters, another important aspect of Upper and Lower Diagonal MARCH
models is the guard against presence of multicollinearity amongst the predictive lag
terms. As much as the new classes of MARCH models have equal performance with
the existing ones, it connotes partial or full elimination of some lag terms whose
parameters may not be significant in each of the models. This parameter restriction
minimizes the number of predictive time variables in a multiple linear relationship.
Hence, these models are established as new classes of MARCH models for

multivariate volatility series.
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